Diagnostic Feature Extraction From Stamping Tonnage Signals Based on Design of Experiments

نویسندگان

  • Jionghua Jin
  • Jianjun Shi
چکیده

Diagnostic feature extraction with consideration of interactions between variables is very important, but has been neglected in most diagnostic research. In this paper, a new feature extraction methodology is developed to consider variable interactions by using a fractional factorial design of experiments (DOE). In this methodology, features are extracted by using principal component analysis (PCA) to represent variation patterns of tonnage signals. Regression analyses are performed to model the relationship between features and process variables. Hierarchical classifiers and the cross-validation method are used for root-cause determination and diagnostic performance evaluation. A realworld example is used to illustrate the new methodology. @S1087-1357~00!00302-6#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic feature extraction of waveform signals for in-process diagnostic performance improvement

In this paper, a new methodology is presented for developing a diagnostic system using waveform signals with limited or with no prior fault information. The key issues studied in this paper are automatic fault detection, optimal feature extraction, optimal feature subset selection, and diagnostic performance assessment. By using this methodology, a diagnostic system can be developed and its per...

متن کامل

Individual Station Monitoring Using Press Tonnage Sensors for Multiple Operation Stamping Processes

In multiple operation stamping processes, a press tonnage signal measured by press tonnage sensors installed on press linkages/uprights, is the summation of die forces at all stations. Different from the current practice of using a whole cycle of press tonnage signals to monitor the compound condition of all stations, this paper proposes a new method to use the partitioned monitoring segments o...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

Online Multichannel Forging Tonnage Monitoring and Fault Pattern Discrimination Using Principal Curve

Due to the late response to process condition changes, forging processes are normally exposed to a large number of defective products. To achieve online process monitoring, multichannel tonnage signals are often collected from the forging press. The tonnage signals contain significant amount of real time information regarding the product and the process conditions. In this paper, a methodology ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000